Муниципальное бюджетное общеобразовательное учреждение города Ульяновска «Средняя школа № 63»

СОГЛАСОВАНО **УТВЕРЖЛЕНО PACCMOTPEHO** на заседании МО учителей заместитель директора по **УВР** математики и информатики руководитель МО/ Данькин Ильичев А.Н. Приказ № 225 Селиверстова Е.В. «30» августа 2023 г. от «1» сентября 2023 г. Протокол №1 от «30» августа 2023 г.

Рабочая программа по предмету «Математике» для 10-11 классов углубленный уровень

402 часа

Учитель: Ильичев Александр Николаевич высшая квалификационная категория

1. Пояснительная записка

Рабочая программа по математике для 10-11 классов составлена в соответствии с:

- Федерального государственного образовательного стандарта среднего общего образования (утвержден приказом Министерства образования и науки РФ №413 от 17.05.2012 г.) (с изменениям, утвержденными приказом Министерства просвещения РФ от 12 августа 2022 года № 732);
- федеральной основной образовательной программы среднего общего образования (утверждена приказом Министерством просвещения РФ от 18 мая 2023 года № 371);
 - основной образовательной программы среднего общего образования Школы №63;
- федерального перечня учебников, рекомендуемых к использованию при реализации имеющихся государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования (утвержден приказом Министерства просвещения РФ от 21 сентября 2022 г. № 858);
- положения «О рабочей программе учебного предмета, курса (ФГОС)» муниципального бюджетного общеобразовательного учреждения гор. Ульяновска «Средняя школа № 63»;
 - и других нормативных актов.

Рабочая программа реализуется на основе следующих учебников:

- 1) С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. организаций: базовый и углубл. уровни. 5-изд. М.: Просвещение, 2020.
- 2) С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. организаций: базовый и углубл. уровни. 5-изд. М.: Просвещение, 2020.
- 3) Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. Геометрия. 10-11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. 5-изд. М.: Просвещение, 2021

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО ПРЕДМЕТА «МАТЕМАТИКА»

Приоритетными целями обучения математике в 10—11 классах на углублённом уровне продолжают оставаться:

- формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция, производная, интеграл), обеспечивающих преемственность и перспективность математического образования обучающихся;
- подведение учащихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;
- развитие интеллектуальных и творческих способностей учащихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
- формирование функциональной математической грамотности: умения распознавать математические аспекты в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты;
- развитие у учащихся точной, рациональной и информативной речи, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления;
- знакомство с методами познания действительности, представление о предмете и методе математики, его отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач;
- эстетическое воспитание человека, понимание красоты и изящества математических

рассуждений, восприятие геометрических форм, усвоение идеи симметрии.

Основные линии содержания курса математики в 10—11 классах углублённого уровня: «Числа и вычисления», «Алгебра» («Алгебраические выражения», «Уравнения и неравенства»), «Начала математического анализа», «Геометрия» («Геометрические фигуры и их свойства», «Измерение геометрических величин»), «Вероятность и статистика». Данные линии развиваются параллельно, каждая в соответствии с собственной логикой, однако не независимо одна от другой, а в тесном контакте и взаимодействии. Кроме этого, их объединяет логическая составляющая, традиционно присущая математике и пронизывающая все математические курсы и содержательные линии. Сформулированное в Федеральном государственном образовательном стандарте среднего общего образования требование «умение оперировать понятиями: определение, теорема, следствие, свойство, признак, доказательство, равносильные формулировки; умение формулировать обратное и противоположное утверждение, приводить примеры и контрпримеры, использовать метод математической индукции; проводить доказательные рассуждения при решении задач, оценивать логическую правильность рассуждений» относится ко всем курсам, а формирование логических умений распределяется по всем годам обучения на уровне среднего общего образования.

МЕСТО УЧЕБНОГО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

На изучение математики в 10 и 11 классах отводится по 6 учебных часов в неделю. Из них по 4 часа в неделю на курс «Алгебра и начала математического анализа» и по 2 часа на курс «Геометрия». Всего 402 часа (204 часа в 10 классе и 198 часов в 11 классе) за 2 года.

2. Планируемые результаты освоения учебного предмета «Математика» на углубленном уровне

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются:

Регулятивные

- составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов; владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

Познавательные

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;

- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные суждения и выводы;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
- использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
- самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях;
- выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;
- выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- структурировать информацию, представлять её в различных формах, иллюстрировать графически;
- оценивать надёжность информации по самостоятельно сформулированным критериям;

Коммуникативные

- воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории;
- понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей;
- участвовать в групповых формах работы (обсуждения, обмен мнениями, «мозговые штурмы» и т .п .); выполнять свою часть работы и координировать свои действия с другими членами команды; оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

личностные:

- сформированностью гражданской позиции учащегося как активного и ответственного члена российского общества, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества

(выборы, опросы и пр.), умением взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

- сформированностью российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках, технологиях, сферах экономики;
- осознанием духовных ценностей российского народа; сформированностью нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного; осознанием личного вклада в построение устойчивого будущего;
- эстетическим отношением к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам различных видов искусства;
- сформированностью умения применять математические знания в интересах здорового и безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); физического совершенствования при занятиях спортивно-оздоровительной деятельность;
- готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умением совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовностью и способностью к математическому образованию и самообразованию на протяжении всей жизни; готовностью к активному участию в решении практических задач математической направленности;
- сформированностью экологической культуры, пониманием влияния социальноэкономических процессов на состояние природной и социальной среды, осознанием глобального характера экологических проблем; ориентацией на применение математических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды.
- сформированностью мировоззрения, соответствующего современному уровню развития науки и общественной практики, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; готовностью осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

Предметные результаты освоения рабочей программы по математике представлены по годам обучения в рамках отдельных курсов.

АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА Элементы теории множеств и математической логики

Учащийся научится.

- Свободно оперировать понятиями: множество, пустое, конечное и бесконечное множества, элемент множества, подмножество, пересечение, объединение и разность множеств;
- применять числовые множества на координатной прямой: отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;
- проверять принадлежность элемента множеству;
- находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

- задавать множества перечислением и характеристическим свойством;
- оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;
- проводить доказательные рассуждения для обоснования истинности утверждений; Учащийся получит возможность научиться.
- оперировать понятием определения, основными видами определений и теорем;
- понимать суть косвенного доказательства;
- оперировать понятиями счётного и несчётного множества;
- применять метод математической индукции для проведения рассуждений и доказательств при решении задач.

В повседневной жизни, и при изучении других предметов:

— использовать теоретико-множественный язык и язык логики для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа и выражения

Учащийся научится.

- Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени п, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
- понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
- переводить числа из одной системы записи (системы счисления) в другую;
- доказывать и использовать признаки делимости, суммы и произведения при выполнении вычислений и решении задач;
- выполнять округление рациональных и иррациональных чисел с заданной точностью;
- сравнивать действительные числа разными способами;
- упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше второй;
- находить НОД и НОК разными способами и использовать их при решении задач;
- выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней;
- выполнять стандартные тождественные преобразования тригонометрических, логарифмических, степенных, иррациональных выражений;

Учащийся получит возможность научиться.

- свободно оперировать числовыми множествами при решении задач;
- понимать причины и основные идеи расширения числовых множеств;
- владеть основными понятиями теории делимости при решении стандартных задач;
- иметь базовые представления о множестве комплексных чисел;
- свободно выполнять тождественные преобразования тригонометрических, логарифмических, степенных выражений;
- владеть формулой бинома Ньютона;
- применять при решении задач теорему о линейном представлении НОД, Китайскую теорему об остатках, Малую теорему Ферма;
- применять при решении задач теоретико-числовые функции: число и сумма делителей, функцию Эйлера;
- применять при решении задач цепные дроби, многочлены с действительными и целыми коэффициентами;
- владеть понятиями: приводимые и неприводимые многочлены; применять их при решении задач;
- применять при решении задач Основную теорему алгебры; простейшие функции комплексной переменной как геометрические преобразования.

В повседневной жизни, и при изучении других предметов:

- выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближённых вычислений, используя разные способы сравнений;
- записывать, сравнивать, округлять числовые данные;
- использовать реальные величины в разных системах измерения;
- составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

Учащийся научится.

- Свободно оперировать понятиями: уравнение; неравенство; равносильные уравнения и неравенства; уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве; равносильные преобразования уравнений;
- решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения третьей и четвёртой степеней, дробно-рациональные и иррациональные;
- овладеть основными типами показательных, логарифмических, иррациональных, степенных уравнений и неравенств и стандартными методами их решений и применять их при решении задач;
- применять теорему Безу к решению уравнений;
- применять теорему Виета для решения некоторых уравнений степени выше второй;
- понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
- владеть методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
- использовать метод интервалов для решения неравенств, в том числе дробнорациональных и включающих в себя иррациональные выражения;
- решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
- владеть разными методами доказательства неравенств;
- решать уравнения в целых числах;
- изображать на плоскости множества, задаваемые уравнениями, неравенствами и их системами;
- свободно использовать тождественные преобразования при решении уравнений и систем уравнений;

Учащийся получит возможность научиться.

- свободно определять тип и выбирать метод решения показательных и логарифмических уравнений и неравенств, иррациональных уравнений и неравенств, тригонометрических уравнений и неравенств, их систем;
- свободно решать системы линейных уравнений;
- решать основные типы уравнений и неравенств с параметрами;
- применять при решении задач неравенства Коши—Буняковского, Бернулли;

В повседневной жизни, и при изучении других предметов:

- составлять и решать уравнения, неравенства, их системы при решении задач из других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем, при решении задач из других учебных предметов;
- составлять и решать уравнения и неравенства с параметрами при решении задач из других учебных предметов;
- составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты;
- использовать программные средства при решении отдельных классов уравнений и неравенств.

Функции

- Владеть понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значения функции на числовом промежутке, периодическая функция, период, чётная и нечётная функции; уметь применять эти понятия при решении задач;
- владеть понятием: степенная функция; строить её график и уметь применять свойства степенной функции при решении задач;
- владеть понятиями: показательная функция, экспонента; строить их графики и уметь применять свойства показательной функции при решении задач;
- владеть понятием: логарифмическая функция; строить её график и уметь применять свойства логарифмической функции при решении задач;
- владеть понятием: тригонометрические функции; строить их графики и уметь применять свойства тригонометрических функций при решении задач;
- владеть понятием: обратная функция; применять это понятие при решении задач;
- применять при решении задач свойства функций: чётность, периодичность, ограниченность;
- применять при решении задач преобразования графиков функций;
- владеть понятиями: числовые последовательности, арифметическая и геометрическая прогрессии;
- применять при решении задач свойства и признаки арифметической и геометрической прогрессий;

Учащийся получит возможность научиться.

- владеть понятием: асимптота; уметь его применять при решении задач;
- применять методы решения простейших дифференциальных уравнений первого и второго порядков.

В повседневной жизни, и при изучении других учебных предметов:

- определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства, асимптоты, точки перегиба, период и т. п.), интерпретировать свойства в контексте конкретной практической ситуации;
- определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и т. п. (амплитуда, период и т. п.).

Элементы математического анализа

Учащийся научится

- Владеть понятием: бесконечно убывающая геометрическая прогрессия и уметь применять его при решении задач;
- применять для решения задач теорию пределов;
- владеть понятиями: бесконечно большие числовые последовательности и бесконечно малые числовые последовательности; уметь сравнивать бесконечно большие и бесконечно малые последовательности;
- владеть понятиями: производная функции в точке, производная функции;
- вычислять производные элементарных функций и их комбинаций;
- исследовать функции на монотонность и экстремумы;
- строить графики и применять их к решению задач, в том числе с параметром;
- владеть понятием: касательная к графику функции; уметь применять его при решении задач;
- владеть понятиями: первообразная, определённый интеграл;
- применять теорему Ньютона—Лейбница и её следствия для решения задач;

Учащийся получит возможность научиться.

— свободно владеть стандартным аппаратом математического анализа для вычисления производных функции одной переменной;

- свободно применять аппарат математического анализа для исследования функций и построения графиков, в том числе исследования на выпуклость;
- оперировать понятием первообразной для решения задач;
- овладеть основными сведениями об интеграле Ньютона—Лейбница и его простейших применениях;
- оперировать в стандартных ситуациях производными высших порядков;
- уметь применять при решении задач свойства непрерывных функций;
- уметь применять при решении задач теоремы Вейерштрасса;
- уметь выполнять приближённые вычисления (методы решения уравнений, вычисления определённого интеграла);
- уметь применять приложение производной и определённого интеграла к решению задач естествознания;
- владеть понятиями: вторая производная, выпуклость графика функции; уметь исследовать функцию на выпуклость.

В повседневной жизни и при изучении других учебных предметов:

— решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик процессов, интерпретировать полученные результаты.

Комбинаторика, вероятность и статистика, логика и теория графов *Учашийся научится:*

- Оперировать основными описательными характеристиками числового набора; понятиями: генеральная совокупность и выборка;
- оперировать понятиями: частота и вероятность события, сумма и произведение вероятностей; вычислять вероятности событий на основе подсчёта числа исходов;
- владеть основными понятиями комбинаторики и уметь применять их при решении залач:
- иметь представление об основах теории вероятностей;
- иметь представление о дискретных и непрерывных случайных величинах, и распределениях, о независимости случайных величин;
- иметь представление о математическом ожидании и дисперсии случайных величин;
- иметь представление о совместных распределениях случайных величин;
- понимать суть закона больших чисел и выборочного метода измерения вероятностей;
- иметь представление о нормальном распределении и примерах нормально распределённых случайных величин;
- иметь представление о корреляции случайных величин;

Учащийся получит возможность научиться.

- иметь представление о центральной предельной теореме;
- иметь представление о выборочном коэффициенте корреляции и линейной регрессии;
- иметь представление о статистических гипотезах и проверке статистической гипотезы, о статистике критерия и её уровне значимости;
- иметь представление о связи эмпирических и теоретических распределений;
- иметь представление о кодировании, двоичной записи, двоичном дереве;
- владеть основными понятиями теории графов (граф, вершина, ребро, степень вершины, путь в графе) и уметь применять их при решении задач;
- иметь представление о деревьях и уметь применять его при решении задач;
- владеть понятием: связность; уметь применять компоненты связности при решении залач:
- уметь осуществлять пути по рёбрам, обходы рёбер и вершин графа;
- иметь представление об Эйлеровом и Гамильтоновом пути; иметь представление о трудности задачи нахождения Гамильтонова пути;
- владеть понятиями: конечные счётные множества; счётные множества; уметь применять их при решении задач;
- уметь применять метод математической индукции;
- уметь применять принцип Дирихле при решении задач.

В повседневной жизни, и при изучении других предметов:

- вычислять или оценивать вероятности событий в реальной жизни;
- выбирать методы подходящего представления и обработки данных.

Текстовые задачи

Учащийся научится:

- Решать разные задачи повышенной трудности;
- анализировать условие задачи, выбирать оптимальный метод решения задачи, рассматривая различные методы;
- строить модель решения задачи, проводить доказательные рассуждения при решении задачи;
- решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;
- анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;
- переводить при решении задачи информацию из одной формы записи в другую, используя при необходимости схемы, таблицы, графики, диаграммы.

В повседневной жизни, и при изучении других предметов:

— решать практические задачи и задачи из других предметов.

История и методы математики

Учащийся научится:

- Иметь представление о вкладе выдающихся математиков в развитие науки;
- понимать роль математики в развитии России;
- использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- применять основные методы решения математических задач;
- на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач;
- пользоваться прикладными программами и программами символьных вычислений для исследования математических объектов;

Учащийся получит возможность научиться.

— применять математические знания к исследованию окружающего мира (моделирование физических процессов, задачи экономики).

ГЕОМЕТРИЯ

Учащийся научится:

- оперировать понятиями: точка, прямая, плоскость, параллельность и перпендикулярность прямых и плоскостей;
- распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб) и тел вращения (конус, цилиндр, сфера и шар), владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);
- изображать изучаемые фигуры от руки и с применением простых чертёжных инструментов;
- делать (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу; строить сечения многогранников;
- извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;
- описывать взаимное расположение прямых и плоскостей в пространстве;
- применять теорему Пифагора при вычислении элементов стереометрических фигур;
- находить объёмы и площади поверхностей простейших многогранников, тел вращения, геометрических тел с применением формул;

Учащийся получит возможность научиться.

— вычислять расстояния и углы в пространстве;

- применять геометрические факты для решения задач, предполагающих несколько шагов решения, если условия применения заданы в явной форме;
- решать задачи на нахождение геометрических величин по образцам или алгоритмам;
- формулировать свойства и признаки фигур;
- доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

- соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;
- использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;
- соотносить площади поверхностей тел одинаковой формы различного размера;
- соотносить объёмы сосудов одинаковой формы различного размера;
- оценивать форму правильного многогранника после спилов, срезов и т. п. (определять количество вершин, рёбер и граней полученных многогранников);
- использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний.

Векторы и координаты в пространстве

Учащийся научится:

- Оперировать понятиями: декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные и компланарные векторы;
- находить координаты вершин куба и прямоугольного параллелепипеда;
- находить сумму векторов и произведение вектора на число,

Учащийся получит возможность научиться.

- находить расстояние между двумя точками;
- находить угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам;
- задавать плоскость уравнением в декартовой системе координат;
- решать простейшие задачи введением векторного базиса.

История и методы в математике

Учащийся научится:

- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России;
- применять известные методы при решении стандартных и нестандартных математических задач;
- замечать и характеризовать математические закономерности в окружающей лействительности.

Учащийся получит возможность научиться.

- представлять вклад выдающихся математиков в развитие математики и иных научных областей;
- использовать основные методы доказательства, проводить доказательство и выполнять опровержение;
- замечать и характеризовать математические закономерности в окружающей действительности и на их основе характеризовать красоту и совершенство окружающего мира, а также произведений искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

3. Содержание предмета «Математика» Содержание программы по алгебре и началам анализа (УГЛУБЛЕННЫЙ УРОВЕНЬ)

АЛГЕБРА

Элементы теории множеств и математической логики

Понятие множества. Характеристическое свойство, элемент множества, пустое, конечное, бесконечное множества. Способы задания множеств. Подмножество. Отношения принадлежности, включения, равенства. Операции над множествами, их иллюстрации с помощью кругов Эйлера. Счётные и несчётные множества.

Истинные и ложные высказывания (утверждения), операции над высказываниями. Кванторы существования и всеобщности. *Алгебра высказываний*.

Законы логики. Основные логические правила. Решение логических задач с использованием кругов Эйлера.

Умозаключения. Обоснование и доказательство в математике. Определения. Теоремы. Виды доказательств. Математическая индукция. Утверждения: обратное данному, противоположное, обратное противоположному. Признак и свойство, необходимые и достаточные условия.

Числа и выражения

Множества натуральных, целых, рациональных, действительных чисел. Множество комплексных чисел. Действия с комплексными числами. Комплексно сопряжённые числа. Модуль и аргумент числа. *Тригонометрическая форма комплексного числа*.

Радианная мера угла. Тригонометрическая окружность. Синус, косинус, тангенс и котангенс числа. Тригонометрические формулы приведения и сложения, формулы двойного и половинного угла. Преобразование суммы и разности тригонометрических функций в произведение и обратные преобразования.

Степень с действительным показателем, свойства степени. Число е. Логарифм, свойства логарифма. Десятичный и натуральный логарифмы.

Тождественные преобразования тригонометрических, логарифмических, степенных и иррациональных выражений.

Метод математической индукции.

Основная теорема арифметики. Остатки и сравнения. Алгоритм Евклида. Китайская теорема об остатках. Малая теорема Ферма. Системы счисления, отличные от десятичных. Функция Эйлера, число и сумма делителей натурального числа.

Основная теорема алгебры. Приводимые и неприводимые многочлены. Симметрические многочлены. Целочисленные и целозначные многочлены.

Уравнения и неравенства

Уравнение, являющееся следствием другого уравнения; уравнения, равносильные на множестве, равносильные преобразования уравнений.

Тригонометрические, показательные, логарифмические и иррациональные уравнения и неравенства. Типы уравнений. Решение уравнений и неравенств.

Метод интервалов для решения неравенств. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Системы тригонометрических, показательных, логарифмических и иррациональных уравнений. Системы тригонометрических, показательных, логарифмических и *иррациональных* неравенств.

Уравнения, системы уравнений с параметрами. Неравенства с параметрами.

Решение уравнений степени выше второй специальных видов. Формулы Виета. Теорема Безу. Диофантовы уравнения. Решение уравнений в комплексных числах. Неравенства о средних. Неравенство Бернулли.

Функции

Функция и её свойства; нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодическая функция и её наименьший период. Чётные и нечётные функции. Функции «дробная часть числа» $y = \{x\}$ и «целая часть числа» $y = \{x\}$.

Взаимно обратные функции. Графики взаимно обратных функций. Тригонометрические функции числового аргумента $y = \cos x$, $y = \sin x$, $y = \tan x$, $y = \cot x$. Свойства и графики тригонометрических функций. Обратные тригонометрические функции, их главные значения, свойства и графики.

Степенная, показательная, логарифмическая функции, их свойства и графики.

Преобразования графиков функций: сдвиг, умножение на число, симметрия относительно координатных осей и начала координат.

Элементы математического анализа

Бесконечно малые и бесконечно большие числовые последовательности. Предел числовой последовательности. Бесконечно убывающая геометрическая прогрессия.

Понятие предела функции в точке. Понятие предела функции в бесконечности. Асимптоты графика функции. Непрерывность функции. Свойства непрерывных функций. Теорема Вейеритрасса для непрерывных функций.

Дифференцируемость функции. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. *Применение производной в физике*. Производные элементарных функций. Правила дифференцирования.

Вторая производная, её геометрический и физический смысл.

Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значения с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении прикладных задач на максимум и минимум.

Первообразная. Неопределённый интеграл. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона— Лейбница. Определённый интеграл. Вычисление площадей плоских фигур и объёмов тел вращения с помощью интеграла.

Дифференциальные уравнения первого и второго порядка.

Комбинаторика, вероятность и статистика, логика и теория графов

Правило произведения в комбинаторике. Соединения без повторений. Сочетания и их свойства. Бином Ньютона. *Соединения с повторениями*.

Вероятность события. Сумма вероятностей несовместных событий. Противоположные события. Условная вероятность. Независимые события. Произведение вероятностей независимых событий. Формула Бернулли. Формула полной вероятности. Формула Байеса.

Вероятностное пространство. Аксиомы теории вероятностей.

Дискретные случайные величины и их распределения. Совместные распределения. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Бинарная случайная величина, распределение Бернулли. Геометрическое распределение. Биномиальное распределение и его свойства.

Непрерывные случайные величины. Плотность вероятности. Функция распределения. Равномерное распределение.

Нормальное распределение. Функция Лапласа. Параметры нормального распределения. Примеры случайных величин, подчинённых нормальному закону (погрешность измерений, рост человека).

Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе.

Корреляция двух случайных величин. Понятие о коэффициенте корреляции. Статистическая гипотеза.

Статистические критерии. Статистическая значимость. Проверка простейших гипотез.

Основные понятия теории графов.

ГЕОМЕТРИЯ

Повторение. Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырёхугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат. Наглядная стереометрия: фигуры и их изображения (куб, пирамида, призма).

Геометрия

Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них.

Взаимное расположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. Углы в пространстве. Перпендикулярность прямых и плоскостей. Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трёх перпендикулярах.

Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды.

Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усечённом конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развёртка цилиндра и конуса.

Простейшие комбинации многогранников и тел вращения между собой.

Вычисление элементов пространственных фигур (рёбра, диагонали, углы). Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара. Понятие об объёме. Объём пирамиды и конуса, призмы и цилиндра. Объём шара.

Подобные тела в пространстве. Соотношения между площадями поверхностей и объёмами подобных тел.

Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач.

Векторы и координаты в пространстве

Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трём некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объёмов.

Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве.

4. Тематическое планирование 10 класс

№ п/п	Наименование разделов и тем	Кол-во часов	Количество контр. работ		
АЛГЕБРА					
1	Корни, степени, логарифмы	73	5		
2	Тригонометрические формулы. Тригонометрические	45	3		
	ции.				
3	Элементы теории вероятностей	8			

4	Повторение	10	1	
	Всего	136	9	
ГЕОМЕТРИЯ				
5	Введение	4	1	
6	Параллельность прямых и плоскостей	19	2	
7	Перпендикулярность прямых и плоскостей	21	1	
8	Многогранники	12	1	
9	Векторы	7		
10	Повторение	5	1	
	Всего	68	6	

11 класс

№ п/п	Наименование разделов и тем	Кол-во насов	Количество контр. работ			
АЛГЕБРА						
1	Функции, производные, интегралы	59	5			
2	Уравнения, неравенства, системы	54	3			
3	Итоговое повторение	23	1			
	Всего	136	9			
	ГЕОМЕТРИЯ					
4	Цилиндр, конус, шар	16	1			
5	Объемы тел	16	1			
6	Векторы в пространстве	6				
7	Метод координат в пространстве. Движение	15	1			
8	Повторение	15	1			
	Всего	68	4			